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Abstract. The recently proposed method for investigating the large-order behaviour of the 
perturbative expansion is applied to a quantum thermodynamical system of interacting 
fermions. The investigation is performed in detail for a system in one space dimension, with 
the use of the Thomas-Fermi approximation in order to deal with many-fermion systems. 
Some observations about the influence of the number of dimensions on the large-order 
behaviour are presented. 

1. Introduction 

Renewed interest in an old problem of quantum field theory-the convergence 
properties of the perturbative series-is shown by a recent series of works devoted to 
the study of this problem (Lipatov 1977a, b, BrCzin et a1 1977a, b, Parisi 1977a, BrCzin 
1978). A particular application of the proposed methods to a thermodynamical system 
of interacting bosons in one space dimension was also recently proposed (Calucci et a1 
1979); an analogous fermionic system is investigated here. For the fermionic case a 
modification of the technique was developed (Parisi 1977b, Itzykson et a1 1977, Balian 
et a1 1978), and the analysis performed here follows those procedures. As foreseen in 
the above references, the final result is quite different from that which one obtains for a 
boson system: in one space dimension a convergent perturbative expansion is in fact 
found; in more than one dimension no definite result is obtained, but it appears clearly 
that the number of spatial dimensions strongly influences the result. 

When dealing with fermions there is no point in looking for classical solutions of the 
interacting field, but it is still possible to find configurations having a role analogous to 
the classical solution of the Bose field; these configurations represent systems of many 
fermions in a large and quasi-constant external field. Systems of this kind are treated 
through the Thomas-Fermi approximation (Parisi 1977b, Itzykson et a1 1977), so that a 
great simplification is obtained in dealing with the functional determinant arising from 
the integration over the fermionic variables. 

The zero-dimensional case is trivial in the fermionic case t, and therefore one begins 
directly with the case of one space dimension. 

t For the bosonic system the the zero-dimensional case helps in understanding some features of the general 
problem. 
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2. One space dimension 

The starting point is the functional integral representation of the partition function (see 
e.g. Bernard 1974), 

with 

The field $ is a (two-component) Pauli spinor; p is the chemical potential, which is 
positive in the present case. 

With a standard device, i.e. through the introduction of the auxiliary real scalar field 
a, with no kinetic term, the integral is transformed into 

which, in turn, after integration over the spinor fields gives the expression 

2 = I det[a,-a:-p -Aa]exp(-Io8 I dTdx t a 2 ) D a / l  det[a,-af-p] 

x exp( -Io5 5 dT dx i a2 )Da .  (2.3) 

Defining now the free Green function 

and the complete Green function 

the known relation 

In det[a, - 8;  - p - Aa]-ln det[a, -a’, - p ]  = tr ln(1- Goha) = -tr G,,a dK (2.4) IoA 
is obtained (Parisi 1977b), from which it appears very clearly that the main task is the 
evaluation of the Green function in the external field ~ a .  

At this point the use of the Thomas-Fermi approximation enters in a fundamental 
way. The Green function G ~ ( T ,  T ;  x ,  x )  is approximated by the Green function in a 
constant external field having the value of the field 4 at the point x and ‘instant’ 7, 
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and correspondingly 

-tr loA GKua dK =lo d r  1 dx& I dq[ln(l +e-s(q2-p)tBAu(X*T) ) - ln ( l+  e-8(q2-cL))], 
B 

The method of BrCzin (1977a, b) consists of studying the behaviour of the functional 
integral in Da for large values of ha. In this way one puts in evidence possible 
divergences of the integral that reflect themselves in divergent behaviour of the formal 
series BNA ”ZN. If, however, one meets a convergent integral, giving rise to an entire 
function of A, then the study of large A (and then large ha)  is equally useful for 
determining the behaviour of the series, since it corresponds to the study of the order 
and type of the entire function, and the determination of the rate of growth of the 
function, for A +CO, also defines the behaviour of the coefficients ZN for N + CO (Boas 
1954). 

For very large Aa equation (2.5) is approximated by 

2 
3 T  

-tr loA GKUa dK --(Aa +p)3 /2+O((Aa  + F ) ’ / ~ ) + *  * * , 

so that the integral of equation (2.3) reduces to 

I exp[ JOB d r  dx($(Aa + P ) ~ ” - -  4 a 2 ) ] D a / [  exp( -loB I d r  dx ta2)Da.  (2.6) 

It is evident that the approximation has been too drastic-the functional integral has 
been completely factorised in r and x, because there is no longer any derivative in the 
integrand. The first correction that can be foreseen takes into account the non- 
uniformity in x of 4(r, x)  (4  will be kept constant in r throughout the calculation). 
Writing #(T, x)  = 4 ( ~ ,  xo) + (x -x~)c$’(T, xo) +. . . one can compute a perturbative cor- 
rection to the Green function G+, that is now written as 

Gg) = G+(r, 7; XI, x d + I  G+(r, r ;  XI, x’)(x’-x~)G+(r, r ;  x ’ ,  x2)4‘(7, xo) dx’ 

+[ 1 G+(r, 7; XI, x’)(x’-xo)G+(T, T ;  x ’ ,  x”)(x”-xo) 

x G+(r, 7; x”, xZ)(q5’(r, ~0))’ dx’ dx”. 

In the zeroth-order approximation 
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I .  

x r(q2)(i a 2 ~ ( 4 2  - 43))r(43) e141”1-143v2(4Y. 

Since finally the trace has to be calculated, y1 = y2, then r being a function of 4 2 ,  the first 
integral gives zero, and the second integral can be put in different forms, one of the 
simplest being 

P 2  2 --MY I dq r ( m q r ( q ) ) 2 =  - - P A  I 42 d4 r3(4)(1 - r ( 4 ) ) ~ ~ ) 2 .  21r 5 7  

Now the integration 1; G‘K‘,‘a dK has to be performed. This amounts to calculating 

The denominator of the integrand (in cosh’) says that the contribution to the whole 
integral comes mainly from the regions of very small Pv. This fact suggests the 
substitution of the term cosh $BY)-’ simply by & S ( @ Y ) .  In this way the integra- 
tion over Y becomes trivial, and the subsequent integration over 4 becomes simple and 
yields, for large, positive Aa, 

so that 
’ 2  

-tr loA G,,a dK -jo d r  j dx[g , (Aa)3 ’2+- (Aa)3 /2 (01)  2P +. . .I,  2 P 

217r a 

and the new expression for the integral of equation (2.6) is 

I exp[ jn’ d r d ~ [ & a ~ ’ ~ + - a  217r 2 P 3  3/2($)2-$])Da/1 exp(-[o’ I d.rdx$)Da, 

(2.7) 

where the substitution ha + a has been used. 
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At this point one can go back to the method of projecting out the 2Nth coefficient of 
the perturbative series through the integral (BrCzin et a1 1977a) 

-N 1nA2)Da/l  exp(-Jo’I drdx$)Da. 

The saddle-point method for A gives A ’ = 
gives rise to an exceedingly complicated equation. 

parametrisation for the function a. A very simple choice is 

d7 dx a2/4N, but the saddle point in a 

To obtain some definite result one can use a sort of variational method, choosing a 

With this parametrisation in the integral in equation (2.8), looking for a common saddle 
point in A,  B, A’, the result is A 2  - N1l5, A - N2/’, B - N-4/5 ; then the saddle-point 
contribution to Z 2 N  is 

(N!)-1’5, cN-(N In N)/5 - e(c-1/5)N 
ZZN -e (2.10) 

with the real constant c calculable but not very interesting, because it depends on the 
parametrisation. 

From this result the series is clearly convergent, and the 2 2 ,  constant in sign. There 
are a number of observations that must be made at this point. The first concerns a check 
of the result (the behaviour, not the value of the constant c) with change of parametris- 
ation. With parametrisations like 

a = A / ( ~ + B X ~ ) ~ ”  (2.9‘) 

the stability of the result has been checked; in particular the variation in n gives, for this 
parameter, an equation independent of N. Other kinds of parametrisation with simple 
piecewise differentiable functions were done, with the same result. 

The second observation is that the result is consistent with the hypothesis that the 
main contribution to the integral originates from large and slowly varying a fields. In 
fact, the saddle point is such that A increases with increasing N while B decreases with 
increasing N, so that the field a becomes larger and smoother. This kind of result is also 
obtained with the other parametrisations. 

Finally, it is clear that the computation is not really completed, because one should 
integrate over the oscillations, separate the zero modes, and so on. These operations 
are ill-defined when the true saddle point for a is not known; however, it is known that 
they do not modify the general property of convergence of the series, although for other 
reasons they are relevant, e.g. they eliminate the ‘i’ introduced in equation (2.8) by the 
Cauchy integral representation. 

Since the result expressed in equation (2.10) is affected anyhow by many approxi- 
mations, this important refinement will not be done, and this equation will be, for the 
moment at least, the final result. 

3. More than one space dimension 

The steps of the method can be repeated for more than one dimension in space without 
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any new complications. For two dimensions, the final result, analogous to equation 
(2.7), assumes a simpler form; in fact it reads 

(3.1) 
so that the equation for the saddle point in CY can be easily written as 

yielding: 
CY = $Kr2 + f, (3.2) 

f being a harmonic function. However, putting solution (3.2) in equation (3.1) the 
exponent is certainly divergent, and therefore no useful saddle point is found?.. It is 
possible to extend the formaiism to an arbitrary number of dimensions. It is easy to 
write the action in D dimensions; then, with a parametrisation like that in equation 
(2.9), i.e. CY = A  e-Brz, one looks for a common saddle point in A, B, A ’ .  For D # 2 the 
result is 

A 2 - ~ ( 2 - D ) / ( 3 D + 2 )  A - ~ 2 / ( 3 D + 2 )  B - ~ - 4 / ( 3 D + 2 )  , > 

The fact that the exponent of N in the expression for A’ changes sign when D crosses 
the value 2 shows the peculiar character of this number of dimensions; in fact, when the 
saddle-point value of A’ decreases with N a diverging series is found. Above 2 what is 
found is a decreasing but positive value of the saddle point in A ’ ,  in such a way that a 
divergent, non-Borel-summable series is generated. 

4. Conclusions 

In conclusion, the two main qualitative results that appear from this calculation are: the 
difference between the boson and the fermion case, shown by their different behaviour 
at D = 1; the strong influence of the number of dimensions in the fermion case, as 
discussed in 0 3. 
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